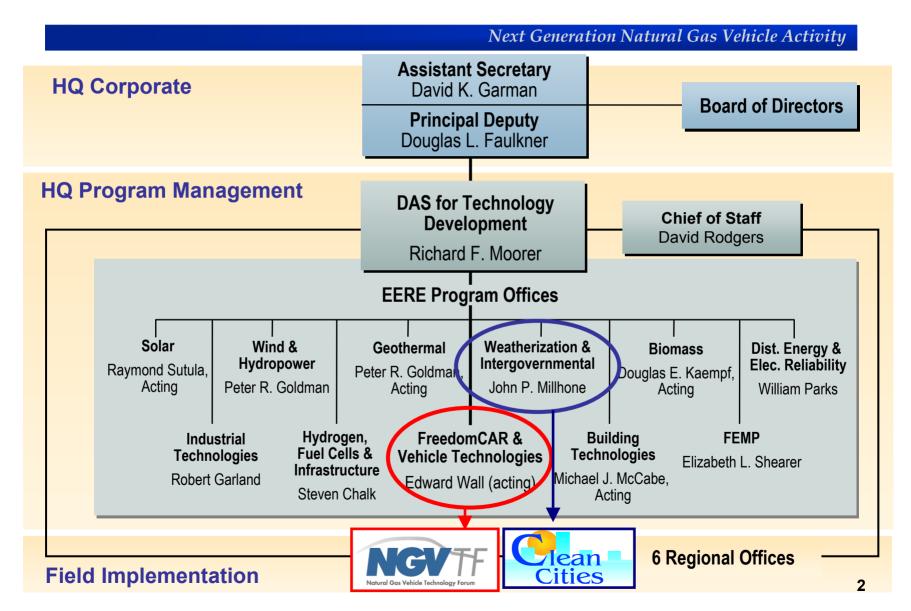


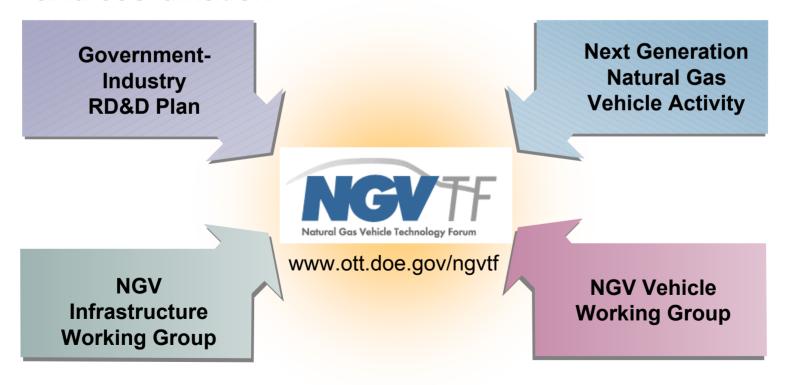
Next Generation Natural Gas Vehicle Activity

U.S. Department of Energy Next Generation Natural Gas Vehicle (NGNGV) Activity

Steering Committee Meeting Washington, DC, July 23-24, 2003


Dennis Smith, DOE
Richard Parish, Mike Frailey, Margo Melendez, NREL
Douglas Horne, Consultant
Denny Stephens, Battelle

DOE: Organization Update



NGVTF Purpose

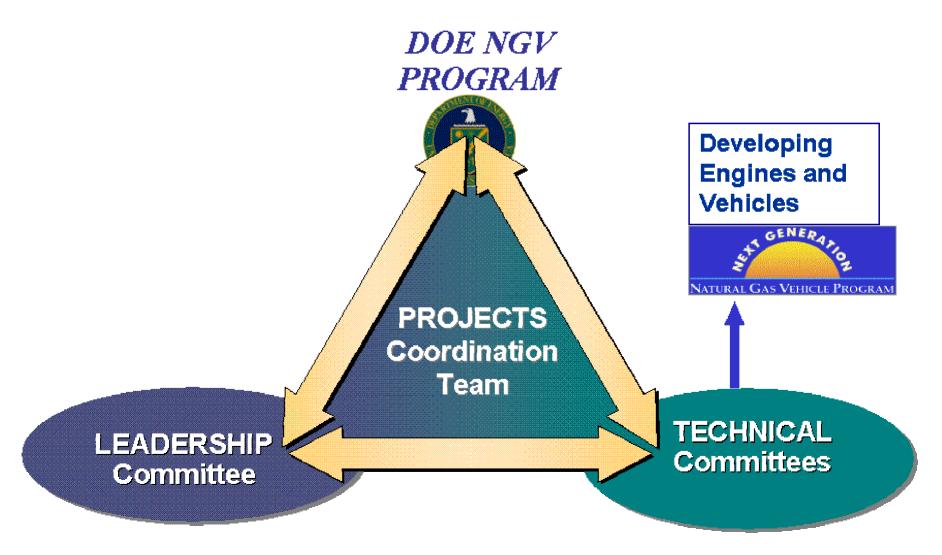
Next Generation Natural Gas Vehicle Activity

One objective of the NGVTF is to consolidate previous efforts for more efficient and effective communication and coordination.

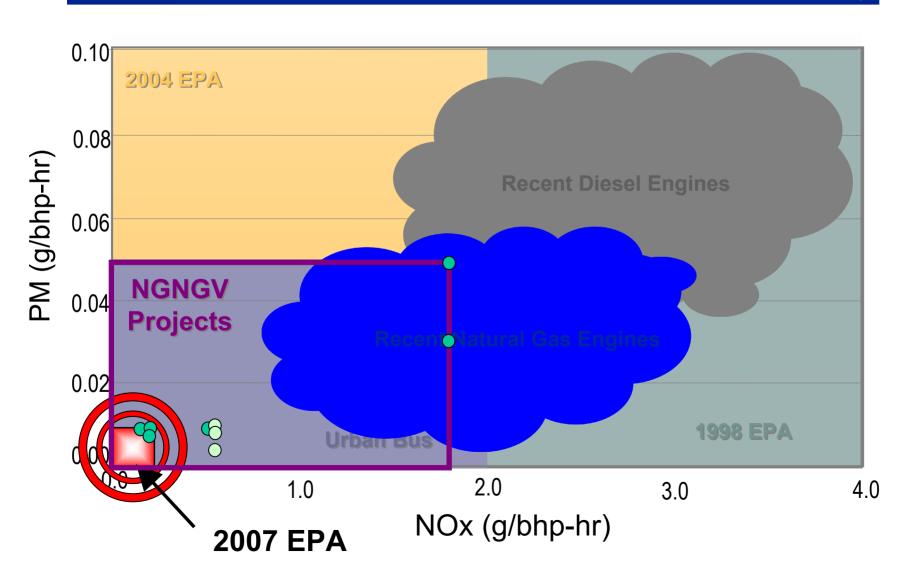
NGVTF Purpose

Next Generation Natural Gas Vehicle Activity

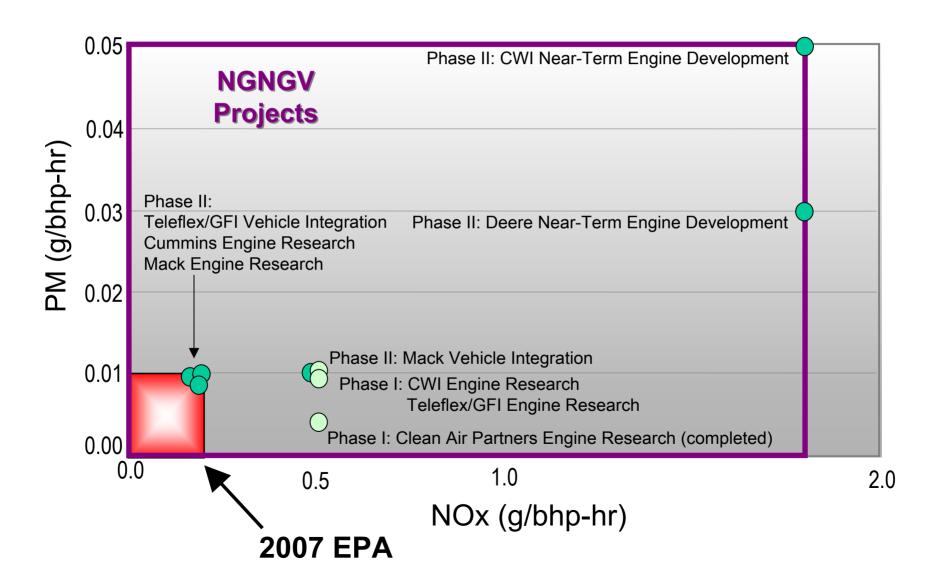
Three Venues for Communication and Coordination


PROJECTS LEADERSHIP TECHNICAL Coordination Team Committee Committees Discuss strategic Confer on funding Review technology directions and strategies development and priorities deployment Discuss management of Suggest funding RFPs and contracting Identify problems and obstacles approaches Lead Technical Committees Suggest technology enhancement needs Support communications efforts

How NGNGV fits into NGVTF



Targeting EPA 2007 Heavy-Duty Emission Standards



NGNGV Approaching EPA 2007 Emission Standards

Natural Gas Engine Technologies

	Description	Torque/HP	Emissions	Efficiency/ Economy
SING, lean-burn	~10:1 c/r, air throttle, TBI or PFI, turbocharged, lean-burn (up to 26:1), closed-loop	Commercially available Torque 375-1450 ft*lbs Horsepower 150-400 hp SING engines generate less HP and torque relative to DI diesels	Cummins, DDC, Deere, Mack certified to CARB Low NOx (2.0g) & 2004 EPA standard without a/t DDC S50G "Low NOx" project	Commercial products, ample inuse data 20-30% fuel economy penalty ~36% peak efficiency
Dual Fuel	~16:1 c/r, unthrottled, MPI (NG) DI (pilot), ~90% substitution, turbocharged, lean-burn (up to 34:1), closed-loop	Commercially available (Clean Air Partners) Torque 520-1250 ft*lbs Horsepower 190-410 hp	Certified to CARB Low NOx (2.5g) 2004 EPA capable NGNGV Phase I 0.5-g NOx w/EGR & CRT	Commercial products, limited inuse data ~20% fuel economy penalty ~38% peak efficiency
HPDI	~16:1 c/r, unthrottled, HPDI (pilot & NG), ~92% substitution, turbocharged, lean-burn (equivalent w/diesel ~100:1), closed-loop	Development engines in field (CWI) Torque 1450 ft*lbs Horsepower 400 hp "Low NOx" Development 1650 ft*lbs/450 hp	Certified to CARB Low NOx (2.5g) 2004 EPA capable CWI ISX-G "Low NOx" project	Preliminary in-use data 10-15% fuel economy penalty 42% peak efficiency "Low NOx" 41% peak efficiency

Natural Gas Engine Technologies (continued)

Next Generation Natural Gas Vehicle Activity

	Description	Torque/HP	Emissions	Efficiency/ Economy
Micro-Pilot (<1% pilot fuel)	~16:1 c/r, unthrottled, MPI (NG) DI (pilot), 99% or greater substitution, turbocharged, lean-burn, closed-loop	Prototype generator sets (Clean Air Partners) No automotive applications Torque and HP ratings equivalent to Dual Fuel, HPDI and diesel	Potential to meet 2010 EPA emission standards w/EGR & CRT	Same efficiency as Dual Fuel ~38% peak efficiency
SING, stoich w/EGR & TWC	Up to 12:1 c/r, air throttle, TBI or PFI (NG), turbocharged, stoichiometric a/f, EGR, TWC, closed-loop	Commercial stationary applications Phase II NGNGV Engine R&D projects Small rating increase relative to lean burn-SING	Potential to meet 2010 EPA emission standards	~40% peak efficiency
HCCI	Wide range of up to 20:1 c/r, unthrottled, variable valve operation/timing	Experimental phases only Phase II projects could assist with future development of this technology	Unknown	Linear relationship between increase in c/r and reduction of thermal efficiency

a/f—air fuel ratio; a/t—aftertreatment; CARB—California Air Resources Board; c/r—compression ratio; CRT—continuously regenerating technology; CWI—Cummins Westport Inc.; DDC—Detroit Diesel Corp.; DI—direct injection; EGR—exhaust gas recirculation; HCCI—homogeneous charge compression ignition; HPDI—high-pressure direct injection; MPI—multi-point injection; NG—natural gas; PFI—port fuel injection; SING—spark-ignited natural gas; stoich—stoichiometric; TBI—throttle body injection; TWC—three-way catalyst.

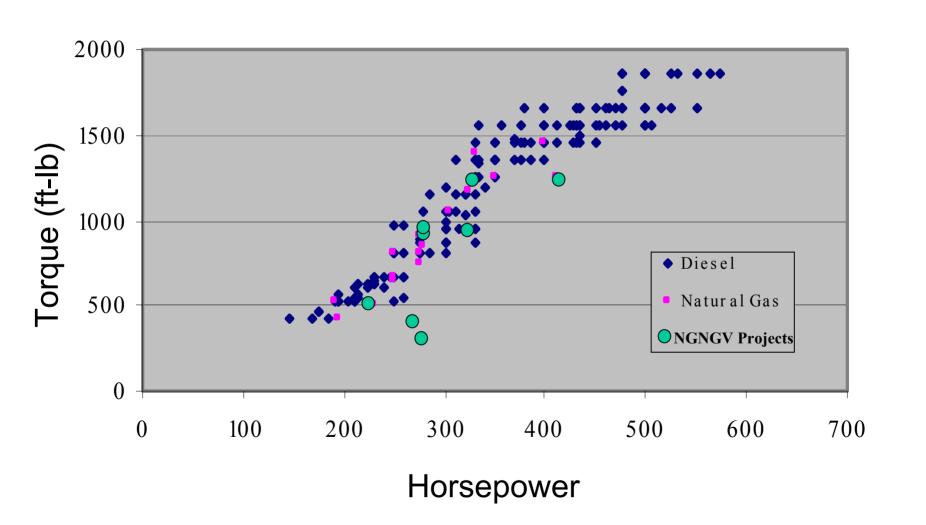
NGNGV Phase I Project Overview

NGNGV Phase I	FY01	FY02	FY03	FY04	FY05	FY06	FY07
Phase I Engine Research (0.5 g/bhp-h NOx	Phase I Engine Research (0.5 g/bhp-h NOx, 0.01 g/bhp-h PM)						
Clean Air Partners, Class 6-8 (NREL) Cat 12.0L, Dual-Fuel, EGR, 410 hp, 1250 ft-lb			C	OMPLE	ETED		
Teleflex GFI, Class 3 (NREL) GM 6.0L, SING-stoich, 286 hp, 317 ft-lb							
Cummins Westport, Class 3-6 (SCAQMD) CWI ISB 5.9L, SING-lean burn w/AT, 230 hp, 500 ft-lb							
Phase I Engine Component Research							
TIAX (NREL) Catalytic glow plugs and shields Phase I Market Assessment			C	OMPLE	ETED		
Cummins Westport (SCAQMD) Strategy for Class 3-6 CNG & Class 7-8 LNG t	rucks						

NGNGV Phase II Project Overview

Next Generation Natural Gas Vehicle Activity

NGNGV Phase II	FY01	FY02	FY03	FY04	FY05	FY06	FY07
Phase II Near-Term Engine Development (1	.8 g/b	hp-h N	Ox, 0.0	05 g/bł	ıp-h Pl	M)	
Cummins Westport, Class 6-8 (NREL) CWI ISL 8.9L, SING-lean burn, 320 hp, 950 ft-	lb						
Deere, Class 6-7 (NREL) Deere 8.1L, SING-lean burn, oxy cat, 280 hp, 900 ft-lb							
Phase II Engine Research (0.2 g/bhp-h NOx	, 0.01	g/bhp-	h PM)				
Mack, Class 6-8 (NREL) Mack 11.0L, SING-stoich, 325 hp, 1250 ft-lb							
Cummins, Class 3-6 (SCAQMD) Cummins 8.3L SING-stoich w/EGR, TWC, 280 hp, 950 ft-lb							
Phase II Vehicle Integration (0.5 g/bhp-h NC	0.0 x	1 g/bh	p-h PN	/ 1)			
Mack, Class 6-8 LNG (NREL/SCAQMD) Mack E7G 12.0L, SING-stoich, EGR, TWC, 32	5 hp,	1250 ft-	-lb				


Teleflex/GFI CNG, Class 3-6 (NREL) GM 8.1L, SING-stoich, 270 hp, 400 ft-lb

Medium- and Heavy-Duty Engine Availability Examples

NGNGV Steering Committee Meeting Agenda – Wed 7/23

Welcome
Project Overview/Preview
Project Reviews
Clean Air Partners (1/2 hour) (Mike Frailey, NREL)
Phase I Engine Research: Conceptual 0.5 g/bhp-h NOx Engine
Deere (1 hour) (Johannes Inzenhofer, Deere)
Phase II Near-term Engine Development: 1.8g/bhp-h NOx+NMHC 8.1L Engine
Lunch Break
Cummins/Cummins-Westport (4-1/2 hours) (Mostafa Kamel, Edward Lyford-Pike, Cummins)
Phase I Engine Research: Hot Surface Ignition-Catalyzed Glow Plug Development
Phase I Engine Research: ULTRA Low NOx, Lean-Burn SI
Phase II Near-term Engine Development: 1.8g/bhp-h NOx Engine
Phase II Engine Development: 0.2g/bhp-h NOx Engine
Phase I Market Assessment: NG Engine and Vehicle Market Analysis

NGNGV Steering Committee Meeting Agenda – Thurs 7/24

8:00	Teleflex/GFI (1 hour) (Steve Petchkoff, Teleflex/GFI)
	Phase I Engine Research: Medium Duty Low NOx CNG Engine
	Phase II Vehicle Development: Medium Duty Low NOx CNG Vehicle
9:15	Mack (2 hours) (Ken Murphy, Chun Tai, Mack)
	Phase II Engine Development: Heavy Duty 0.2g/bhp-h NOx Engine
	Phase II Vehicle Development: Heavy Duty 0.5g/bhp-h NOx Refuse Hauler
11:15	Lunch Break
1:00	Steering Committee Discussion of Current Projects
2:00	Identification of Future Projects/Activities
3:00	Discussion of Possible NGV-TF Presentations/Updates

Next Generation Natural Gas Vehicle Activity

Outcomes

- Excellent progress with limited funding...need more money (heavy duty, LNG applications)
- Fuel efficiency needs to be maintained and improved
- Appears to be greater support from OEM leadership
- 0.2 g/bhp-hr NOx is attainable with NG…need to get this word out a clear communications strategy
- Address all emissions issues (particularly formaldehyde)
- Stoichiometric w/EGR is a technology which enables the use of 3-way catalysts
- Cost for diesels to achieve 2007 2010 standards will be high
- Need to get vehicle OEMs involved, working platform integration issues
- NG engine technologies should be compatible with HCNG

Next Generation Natural Gas Vehicle Activity

Outcomes (cont'd)

- Product sales and business case are important (need market pull)
- Vehicle development/integration could be sponsored by Clean Cities

Next steps

- Fill gaps of engine availability (high hp/high torque)
- Aggressively pursue 0.2 g/bhp-hr NOx
- Commercial CNG engine into hybrid electric integration project
- Actively communicate successes to date
- NGNGV status teleconference on a bi-monthly basis
- Two-page fact sheet on status of NGNGV activity for NGVTF meeting
- Internal DOE program review (with FCVT and HFCIT programs)